
Phobetor : Princeton University’s Entry in the

2010 Intelligent Ground Vehicle Competition

Solomon O. Abiola, Ryan M. Corey, Joshua P. Newman, Srinivasan A. Suresh,

Laszlo J. Szocs, Brenton A. Partridge, Derrick D. Yu and Tony H. Zhu

Princeton University School of Engineering and Applied Science

Princeton, NJ, USA

May 17, 2010

Faculty Statement:

I hereby certify that the design and development of the robot discussed in this technical report has involved
significant contributions by the aforementioned team members, consistent with the effort required in a
senior design course. Phobetor is a newly constructed vehicle with numerous design modifications, including
a redesigned chassis with reduced volume, increased serviceability, and improved waterproofing.

Contents

1 Team Overview 1

2 Design Process 1

3 Hardware 2

3.1 Mechanical Design . 3
3.1.1 Drivetrain . 3
3.1.2 Chassis Innovations . 4

3.2 Electrical Design . 5
3.3 Sensors . 6
3.4 Electronics and Computer Hardware . 6

4 Software 7

4.1 Key Software Innovations . 7
4.2 Computing Platform . 8
4.3 State Estimation . 8
4.4 Vision . 9
4.5 Navigation . 10

4.5.1 Cost Map Generation . 10
4.5.2 Waypoint Selection . 10
4.5.3 Path Planning . 10

4.6 Path Following . 11
4.7 Speed Control . 11

5 Conclusion 12

1 Team Overview

Princeton University’s IGVC team consists of members of Princeton Autonomous Vehicle Engineering
(PAVE), Princeton University’s undergraduate student-led robotics research group. Our team builds upon
PAVE ’s experience in robotics competitions, including participation in the 2005 DARPA Grand Challenge
[4], the 2007 DARPA Urban Challenge [9], the 2008 Intelligent Ground Vehicle Competition (IGVC) [5], and
the 2009 IGVC [1]. In the 2008 IGVC, our team placed third overall and won rookie-of-the-year, placing
1st, 4th and 6th in the Design, Navigation and Autonomous challenges, respectively. Argos, our entry in
the 2009 IGVC, placed fourth overall, winning the Navigation challenge and successfully completing the
JAUS challenge. Our entry for the 2010 IGVC, Phobetor, is an all-new robot and represents a significant
evolutionary step in hardware design and software innovation. We are confident that Phobetor and PAVE

will be a competitive force in the 2010 IGVC.

Our team is composed of undergraduate students from several engineering and non-engineering depart-
ments.1 As in previous years, we maintained a straightforward and relatively flat organizational structure,
as shown in Figure 1. Team members were grouped into hardware or software teams according to their
area of expertise. The hardware group is responsible for all physical aspects of the robot, including design,
fabrication, sensor selection, electronics, electrical wiring and computer hardware. The software group is
responsible for algorithm design and programming implementation. Primary tasks include sensor processing,
intelligent navigation schemes and robust feedback control systems. To oversee these groups, we dedicated a
student team leader to specialize in project management. Overall, over 600 person-hours this academic year
have been spent working on Phobetor and its specific software improvements.

Project Manager
Brenton Partridge ’12, ELE

Hardware Group
Solomon Abiola ’12, PHY

Ryan Corey ’12, ELE
Srinivasan Arul Suresh ’13, MAE

Laszlo Szocs ’13, MAE

Software Group
Joshua Newman ’11, ELE

Brenton Partridge ’12, ELE
Derrick Yu ’10, ELE
Tony Zhu ’11, ELE

Figure 1: Team Organization Diagram

2 Design Process

As the 2010 IGVC competition presents similar challenges to those in previous years, PAVE ’s basic design
objectives have remained approximately the same. Effort this year was primarily focused on improving upon
the successful elements of previous designs. Utilizing the design process illustrated in Figure 2, the team
began with a critical assessment and evaluation of last year’s robot, determining the strengths and short-
comings of that design. The resulting requirements, enumerated in Table 1, were prioritized and compared

1Departments represented include ELE (Electrical Engineering), MAE (Mechanical and Aerospace Engineering), and PHY
(Physics).

1

against the ability and knowledge of the current year’s team, motivating a specific set of design features for
Phobetor. Specific hardware components and software modules were modeled independently and integrated
into higher-level models of hardware layout and software communications protocols. In the acquisition and
implementation stages, separate subsystems were developed in parallel as much as possible to minimize devel-
opment time and maximize testing. If any subsystem failed tests done on it independently, it was redesigned
accordingly and brought through the process again before integration testing was attempted.

Analyze Design Simulate Acquire Implement Test Deploy

Figure 2: Flowchart of Design Process

Hardware
1. Drivetrain suffered from noise from loss of

chain tension

2. Inefficient use of space in Argos’ base

3. Lack of effective waterproofing made
Argos a less robust robotic platform

4. Paneling material had high coefficient of
thermal expansion, allowing some water to
enter tower

5. Structure of midsection prevented easy
access for servicing

Software
1. Performance of obstacle detection limited

image resolution that could be processed
in real-time

2. Incorrect fusing of detected lane markings
into continuous boundaries for navigation

3. Failure to reject spurious lanes

4. Performance of path planning limited
system response time

Table 1: Areas of Argos Targeted for Improvement

The discussion of the robot design has been divided into two parts within this paper: Hardware (Section 3)
and Software (Section 4). In each section, we outline the specific improvements implemented as well as the
specific design process behind them. Based on our designs, our entry into this year’s IGVC, Phobetor, is a
robust and advanced autonomous system that we expect to perform competitively.

3 Hardware

To address the shortcomings in the mechanical design of our 2009 entry, we decided to build a completely
new robot from the ground up. In doing so, we were able to address all of the hardware design flaws listed
in Section 2 and make several other innovations. We examine in detail the redesign of the robot’s drivetrain
and chassis in Section 3.1, and changes to our electrical system are discussed in Section 3.2. We discuss our
sensors and electronics in Sections 3.3 and 3.4. An overall list of components used on Phobetor and their
costs is shown in Table 2.

2

Item Actual Cost Team Cost
Gladiator Technologies G50 gyroscope∗ $1,000 $0
Wheels, Tires, & Drivetrain Components $567 $567
Videre Design STOC-15 Stereo Camera $1,660 $1,660
HemisphereGPS A100 GPS Unit∗ $1,500 $0
OceanServer OS5000-US Digital Compass∗ $299 $0
Labjack UE9 Data Acquisition Card $500 $0
US Digital HB6M Rotary Encoder (2x) $215 $430
NPC T64 Motor, .7 HP (2x) $286 $572
IFI Robotics Victor 885 Motor Controller (2x) $440 $440
Raw Material for Chassis $1425 $1425
Miscellaneous Hardware $340 $340
Computer Components $844 $844
Tempest TD-22 12V Battery (6x) $390 $390
IOTA DLS-27-25 Battery Charger $295 $295
Samlex SDC-08 24V/12V DC-DC Converter $60 $60
Linksys WRT54G Wireless router (2x) $75 $0
R/C Radio System $350 $350
Total: $9,532 $6,256

∗Denotes donated item. All other zero-cost items were borrowed from Argos, the 2009 robot.

Table 2: List of Costs for Building Phobetor (all trademarks property of their respective owners)

3.1 Mechanical Design

Phobetor, like last year’s Argos, measures 31” wide, 37” long, and 69.5” tall; it weighs approximately 270
pounds excluding payload. The robot features a tricycle wheelbase with two powered rear wheels and a
leading caster; this design ensures contact with the ground at all times, regardless of terrain. Along with
the low center of gravity, the wheelbase makes Phobetor highly stable and holonomic. The drive wheels are
fitted with snowblower tires, which provide superior traction on a variety of surfaces, especially off-road. On
top of this base is the sensor tower, which is designed to provide Phobetor with a vantage point equivalent
to that of an average human. As with all PAVE robots, Phobetor was designed entirely in CAD before any
material was cut. Making note of the electronics used last year, we were able to model all of the components
that would be placed in the robot’s interior and choose spatially efficient layouts. Using Autodesk Inventor
2010 in the design process accelerated the redesign from last year’s platform, and allowed for estimation of
weights and moments before construction. A CAD visualization of the robot can be seen in Figure 3a, with
a detailed interior image shown in Figure 3b.

3.1.1 Drivetrain

This year’s drivetrain represents the latest in a series of revisions beginning with Kratos. Kratos’ system
experienced problems accelerating to speed, climbing hills, and reaching maximum allowed speed. Last
year’s drivetrain introduced a 24V electrical system to address these problems: Argos’ drivetrain provided
the required performance in various driving modes, including full speed in a straight line, zero-radius turning,
and driving up a 10◦ incline, all on grass. On Phobetor, after verification that the wheelbase and weight
distribution would be approximately the same, we used identical NPC T64 motors to those in Argos.

3

(a) CAD Render of Phobetor (b) CAD render showing internal components

Figure 3: Visualizations of Phobetor

Argos had a few issues to correct, however, as it suffered from occasional loss of chain tension after strenuous
driving, as well as the chain impinging on a motor support. On Phobetor, this was corrected by first
redesigning the motor mount so that there are no structural or support members in the plane of the sprockets.
Second, the wheel bearings have tensioners on them, using a bolt to ensure that the bearings cannot slip
forward under tension as they did on Argos.

3.1.2 Chassis Innovations

Phobetor has an entirely new chassis built from 80/20 structural framing aluminum. Phobetor shares much
of Argos’ chassis layout; the two-layer organization allows all heavy components to be placed near the center
of rotation, lowering Phobetor’s moment of inertia. Both horizontal dimensions were preserved, allowing
Phobetor to fit through a standard door. Phobetor’s chassis redesign was driven primarily by a need to
increase the volume efficiency of the chassis, as well as to facilitate maintenance of the robot’s systems. To
this end, the second layer was shortened by approximately three inches in height. In order to preserve the
camera’s viewpoint, the height of the tower was increased accordingly. The second level also features two
large doors, one on each side. When open, these allow for easy access to every component on the second
level.

In designing for serviceability as well as full waterproofing (according to the design considerations in Table
1), we were forced to sacrifice some accessibility of the lower level; however, as opposed to Argos, the joints
in Phobetor’s frame were oriented to make exposing that level a simple and quickly reversible operation.
Phobetor was designed to improve on Argos’ waterproofing, and this played a key role in the chassis redesign.
The wheel wells have been sealed better, and the doors are angled to allow water to run off. The doors are

4

edged with rubber-bulb seals, and are mounted on a continuous hinge, thereby sealing the full perimeter of
these sections.

Our innovative design feature of waterproofing also required careful consideration of materials for doors and
panels. During outdoor testing, the paneling material on Argos’ tower began to expand in high temperatures,
developing a wave shape that could not be adequately sealed. The material previously used, polyethylene,
had a linear expansion coefficient of 111× 10−6 in

in ◦F . This year, the material used for the tower and exterior
paneling was 1/8” MDS Filed Nylon 6/6, which boasted a coefficient of only 44.4 × 10−6 in

in ◦F . For the
moveable doors, we decided to use 1/8” Garolite, a sturdier and more rigid material with an impressive
expansion coefficient of 6.6 × 10−6 in

in ◦F . This combination of materials ensures that our robot will resist
temperature changes and that the paneling will adequately protect the electronics.

3.2 Electrical Design

Phobetor’s drive motors, computer, and electronics are powered by a 24-volt electrical system. Although the
robot is required to run for only six minutes during the competition, our 132 amp-hour battery bank provides
power for almost one hour of uninterrupted testing. Figure 4 shows the power storage and distribution layout
of Phobetor’s electrical system. The six 12-volt lead-acid batteries are arranged as two banks in series, and
a voltage divider with precision 15kΩ resistors ensures that the banks charge and discharge evenly. This
divider prevents power failures and protects the long-term health of the batteries while drawing negligible
power.

Figure 4: Electrical System

The computer draws DC power directly from the 24-volt system with a 450W ATX power supply, eliminating
the need for a heavy and power-inefficient AC inverter. The 12-volt electronics, including router and GPS, are
run from an 8-amp DC-DC converter and a six-fuse distribution block. The remaining electronics, including
the LabJack computer interface (described in Section 3.4) and encoders, are powered by a separate 5-volt
converter. All components are protected by water-resistant breakers and replaceable fuses. A summary of
power usage is shown in Table 3.

5

Voltage Device Peak Power Nominal Power Idle Power
24 Drive Motors 5,280 1,180 0
24 Motor controllers 7.04 2.48 2.48
24 Computer 450 300 60
12 Router 6 4.8 3
12 Access Point 6 4.8 3
12 GPS 2 1.8 1.8
12 Compass 0.6 0.42 0.16
12 Warning Light 15 10 0
5 LabJack 0.8 0.58 0.43
5 Encoders 0.86 0.58 0.58
5 Gyroscope 0.33 0.25 0.25
5 E-Stop R/C Link 1 0.5 0.5

Total 5,755 1,396 72

Table 3: Power Requirements for Phobetor (all power listed in Watts)

3.3 Sensors

Environmental sensing in Phobetor relies on a single Videre Design stereo-on-chip (STOC) color camera with
a 15 cm baseline. This is the same camera that was used in the 2009 entry Argos and has proven to be
a reliable and efficient stereo optical system that fulfills all of our requirements. By detecting both lanes
and obstacles on this device, the camera avoids the usual, error-laden frame-of-reference transformations
that come with using a different camera for each task. Additionally, an onboard Field Programmable Gate
Array (FPGA) computes the three dimensional point cloud using highly parallelizable algorithms, reducing
the computational load placed on our computer systems and increasing both resolution and refresh rate.
The camera is mounted such that three-dimensional features can be detected between 20 centimeters and
20 meters from the front caster, sufficient for obstacle and lane detection at competition speeds [2].

Besides incorporating advanced stereo vision systems, Phobetor also boasts additional absolute and differ-
ential sensors for awareness of robot state. The robot is equipped with a Hemisphere GPS unit, US Digital
wheel encoders to generate high-precision and low-drift data for wheel angular velocity, and an OceanServer
OS500-US digital compass for accurate heading information. Any limitations on the compass’ preciseness
at high speeds are corrected by GPS and encoder data, as described in Section 4.3. In order to provide yaw
rate data without depending on differential wheel speeds, which would introduce error due to slippage, a
Gladiator G50 MEMS gyroscope is mounted to Phobetor’s midsection.

3.4 Electronics and Computer Hardware

By utilizing a LabJack UE9, Phobetor’s computer is able to access all low-level electronic sensors and
outputs through a single interface, greatly simplifying design and limiting the amount of custom circuitry.
The LabJack provides an array of features including pulse width modulation (PWM) to control the Victor
885 motor controllers. Using on-board 4x quadrature counting, position and speed are measured using wheel
encoders on the drive wheels; a 14-bit analog input interfaces with the Gladiator G50 gyroscope.

For safety, Phobetor can be instantly stopped by a large red button on the center of the tower, or by a
handheld wireless transmitter. A pair of mechanical relays in series comprise a reliable control switching

6

and emergency stop circuit. The first relay selects between PWM signals from the computer and the radio
controller. The 2.4 GHz spread-spectrum wireless radio system allows manual control of the motors with
minimal noise and interference. The second relay cuts the signal to the motor when the E-Stop system is
activated. These relays isolate and protect the control circuits while providing a reliable emergency stop
mechanism at a low level.

Like its predecessor Argos, Phobetor operates with one on-board computer, offloading stereo image processing
to Videre’s on-board camera FPGA (see Section 3.3). To minimize computer volume, Phobetor utilizes a
Micro ATX motherboard with onboard firewire ports, eliminating the usage of a firewire card. Phobetor’s
computer consists of a quad-core Intel Core i7 CPU at 2.66 GHz, 6 GB of RAM, and an 500 GB hard drive.
Internet access is provided via dual 802.11g Linksys R© wireless routers; this also allows interfacing with JAUS
systems and development machines using a WiFi or Ethernet connection.

4 Software

Phobetor’s software employs the same paradigm as Argos and Kratos, consisting of independent processes
that communicate asynchronously over our publish/subscribe messaging framework, IPC++. Individual
modules provide JAUS compliance (Section 4.2), capture and process sensor input (Section 4.4), estimate
the state (position and direction) of the robot (Section 4.3), plan a desired path (Section 4.5), and determine
the motor speeds necessary to follow the path (Sections 4.6 and 4.7). A holistic diagram showing module
roles and message contents is displayed in Figure 5.

obstacles lanes state
JAUS Boxother JAUS

connectivity

IEEE1394
CostMapGeneration exe

obstacles, lanes, state
during snapshot

costmap,
current Ethernet

Camera
Videre.exe

- Obstacle detection
Lane detection

CostMapGeneration.exe
- Map lane/obstacles to global frame
- Time filter global lanes

current
waypoint JAUS.exe

- Gateway to JAUS box- Lane detection g
- Find lane-based waypoints (waypoints)

Compass.exe Navigation.exe
- Path planning

orientation
Compass

StateEstimation.exe

PathTracking exe

pathRS-232/USB state

latitude,
longitude

GPS.exe PathTracking.exe
- Path Following

Desired speed and heading

GPS

OPEC.exe
- Low-level speed controlgyroscope

p g

Low level speed controlgyroscope,
wheel speeds

Ethernet

LabJack

Figure 5: Diagram of Software Architecture

4.1 Key Software Innovations

Phobetor’s software includes a number of unique and innovative approaches to address the various design
challenges. Notable among these are the implementation of a state-of-the-art variant of Kalman filter to
fuse sensor data for state estimation (Section 4.3), algorithms for lane detection and validation developed

7

entirely by PAVE members (Section 4.4), and highly optimized implementations of graph search algorithms
for path planning (Section 4.5.3).

4.2 Computing Platform

Phobetor’s computer runs the Windows Server 2008 operating system, which improves upon Windows Server
2003 (used on Kratos’ computers) by incorporating support for the High Precision Event Timer (HPET) in-
cluded on modern motherboards. This allows for timers with millisecond accuracy and sub-millisecond jitter.
All software is written in platform-independent C++ using Visual Studio IDE for ease of development.

We continue to employ IPC++, an object-oriented wrapper of Carnegie Mellon’s Inter-Process Communica-
tion (IPC) platform [12], as our underlying robotics framework. Each software component runs as a discrete
program communicating over TCP with a central server; message publishing and subscription, serialization,
and timing are all abstracted with a custom-developed C++ API [2].

Because IPC++ is a similar paradigm to JAUS, implementing the communication protocol is rather simple,
with an additional process translating between external JAUS messaging and internal IPC++ messaging.
The process replies to queries from the COP with the latest update of the robot’s state. For control messages
sent from the COP, such as start/stop and set waypoints, the translator simply sends the appropriate
equivalent message over IPC++ [2].

4.3 State Estimation

Phobetor’s state estimation module uses a state-of-the-art square root central difference Kalman filter
(SRCDKF) [13] to combine data from all state sensors (compass, GPS, wheel encoders, and gyroscope)
and maintain an optimal estimate of a vector that defines the state of the robot:

x = [x, y, θ, δ, ω, vr, vl]
T
,

where x is Phobetor’s x coordinate in meters in a Cartesian local frame relative to its startup location, y is
the vehicle’s y coordinate in meters, θ ∈ [0, 2π) is heading, δ ∈ [0, 2π) is the bias between true GPS heading
and magnetic compass heading, ω is the yaw rate of the vehicle, and vr and vl are the right and left wheel
ground speeds in m/s, respectively. The SRCDKF is a sigma point filter utilizing a deterministic set of
points to represent a multivariate Gaussian distribution over possible states and measurements. Parameters
for Gaussian noise variables in our model were estimated by analyzing the long-term at-rest behavior of
the sensors’ signals. In all cases except the wheel encoders, the Gaussian random variable is an accurate
representation of the sensor noise; for the encoders, it approximates the finite, discrete noise corrupting the
train of digital pulses. The filter, which was developed for Kratos [6] and updated to include gyroscope
measurements for Argos [2], gives Phobetor a robust method of determining its state and accurately arriving
at waypoints, even under conditions of wheel slippage or GPS outages.

8

4.4 Vision

Using the point cloud provided by the Videre camera (described in Section 3.3), we detect obstacles using an
algorithm developed by Manduchi et. al. [11], in which we search for pairs of points that are approximately
vertical to each other [6]. While this performed sufficiently for Argos and Kratos, Phobetor implements
further optimizations from Andersen et. al. [3], in which the point cloud (compensated for robot pitch and
roll) is mapped into 1cm-square “bins” in the local ground plane. These improvements allow us to increase
the resolution of input images without dropping frames.

The lane detection algorithms used in Phobetor represent significant innovations in image processing. Our
basic algorithm, developed for the DARPA Urban Challenge in 2007, applies filters for yellow content, white
content, pulse width, and obstacles detected in the same frame, then fuses the results into a heat map which is
searched for lines [6]. To ensure that lane markings within shadows are not ignored, Phobetor and Argos use
a novel white filter operating in hue-saturation-value space [14], which utilizes separate brightness thresholds
based on local saturation. The RANSAC algorithm then searches for the parabola that passes near the most
on-pixels in the heat map [7, 6]. This algorithm can tolerate gaps in the heat map lane markings, making it
ideal for handling the dashed lines in the autonomous challenge. Various steps and results of lane detection
are shown in Figure 6. Response time is less than one second, which has proven sufficient in the past two
competitions.

Figure 7: Stages of Lane Detection

Figure 8: Stereo Vision Results

7.

4.4 State Estimation

We use a square root central difference Kalman filter (SRCDKF) to fuse GPS, wheel encoder, and compass data
into a near-optimal estimate of the vehicle’s position[10]. The central difference Kalman filter (CDKF) is a type
of sigma point filter like the unscented Kalman filter (UKF) which uses a deterministic set of points to represent
a multivariate Gaussian distribution over states and measurements. When propagated through nonlinear process
and measurement models, these points represent the resulting posterior Gaussian random variable accurately to the
second order Taylor series expansion of the nonlinear system. In contrast, the popular extended Kalman filter (EKF)
is only accurate up to the first order.

To obtain numerical stability and efficiency, the square root formulation of the CDKF manipulates the lower
triangular Cholesky factor of the error covariance matrices. In this way the represented covariance matrices are
necessarily symmetric and positive definite. The computational complexity is O(L3) where L is the length of the

11

Figure 6: Stages of Lane Detection [6]

This year, the majority of our vision development efforts have focused on developing robust methods of fusing
and filtering lanes over time, which allows us to build a continuous piecewise model of the lane and to reject
spuriously detected lanes. Because turns are guaranteed to have a minimum turning radius, we can use a
road model which, for each of the left and right lane boundaries, rejects possible lane markings that disagree
with an extrapolation of the history of detected lane markings. We approximate the “error” between any two
lane markings in Cartesian global space to be the normalized sum of exponentially scaled differences between
sampled sets of points, then threshold on this value [15]. The result is a pair of continuous boundaries that
allows for effective autonomous navigation.

9

4.5 Navigation

Phobetor’s environment is represented by a cost map incorporating lane and obstacle data. A desired
waypoint is selected, and the path planning algorithm then calculates the most efficient trajectory to that
waypoint given the constraints of the cost map.

4.5.1 Cost Map Generation

The purpose of cost map generation is to build a noise-tolerant model of the environment from obstacle, lane
marking, and state data. Phobetor uses a similar architecture to that of previous years, assigning continuous
costs (calculated with a moving average) to each point in a 10cm x 10cm grid of cells within our global map
[6, 2]. With every vision update, the robot generates a local cost map of lanes and obstacles directly in front
of it. To account for the physical geometry of the robot during path planning, a “footprint” cost map is
employed, in which the cost of each cell is set to the sum of the costs of its neighbors [2].

4.5.2 Waypoint Selection

Phobetor’s approach to waypoint selection is very similar to that of Argos [6]. For the navigation challenge,
Phobetor iterates through a presorted list of waypoints. The presorting can then be done in non-real-time,
finding the shortest overall path by checking all possible permutations. In the autonomous challenge, the
desired waypoint is generated dynamically. The midpoint between the furthest points seen in the left and
right lanes is found, and the cell with the lowest cost within a certain radius is chosen as the waypoint. In
both cases, a new waypoint is only submitted to path planning once the robot has approached the current
waypoint.

4.5.3 Path Planning

For both the autonomous and navigation challenges, provided that the lane markings in the former are
represented as well-defined continuous boundaries (see Section 4.4), a variant of an A* graph search algorithm
is ideal to handle arbitrarily complex obstacle collections such as switchbacks. Last year, Argos used the
Dynamic A* Lite algorithm (D* Lite) which guarantees optimality and completeness of the path it finds
through the search space like the a simple A* planner, but also uses knowledge from previous searches to
reduce computation for each search. This provided an order of magnitude speed improvement over the basic
algorithm, which restarts the search with each iteration. However, we determined that further optimization
was necessary to improve reaction time.

There is a different class of search algorithms, anytime algorithms, that produce suboptimal paths but can
complete the search in some given time. These start by producing a highly suboptimal path with bounded
cost and then improving the path in any remaining available time. This year on Phobetor, we implemented
the Anytime D* replanning algorithm which combines the time-efficiency of anytime algorithms with the D*
search [10]. Anytime D* maintains a search history to reduce computation by updating paths each time new
information is incorporated, but does so by finding an initial suboptimal path and improving it. Currently
the search considers 16 discrete headings rather than the continuous search used in Argos, but more discrete
levels can be considered if necessary.

10

4.6 Path Following

Last year, Argos used a crosstrack error navigation law to follow paths, sequences of points ~r(n), generated
by navigation algorithms [8]. This algorithm minimizes the crosstrack error, e(t), shown in Figure 7.

r(n*)

v(t)

p(t)

e(t)

ψ(t)

Figure 7: Crosstrack Error Law

The error e(t) is defined as the signed, perpendicular distance from the center of the robot (midpoint between
the wheels) to the closest point on the planned path. e(t) and its time derivative are given by:

|e(t)| = minn‖~r(n)− ~p(t)‖, ė(t) = v(t) sin(ψ(t)),

where v(t) is the robot speed and ψ(t) is Phobetor’s heading with respect to the planned path. From the
model above, the control law specifies a desired yaw rate

ωd(t) = khψ(t) + arctan
kee(t)
v(t)

,

where kh and ke are tunable constants.

This controller works well for following smooth trajectories that the robot can easily follow. However, the
path generator in our navigation algorithm generates paths choosing from 16 discrete directions, connecting
adjacent and nearby cost map cells. The resulting paths are often not smooth. To generate smooth trajecto-
ries that follow our planned paths, Phobetor will use B-spline paths, which are piecewise polynomial curves
that connect a given set of points. We globally limit the degree of component polynomials and require the
derivatives of the polynomials to be equal where adjacent segments meet, so the entire path is smooth.

4.7 Speed Control

Phobetor and Argos have similar size and weight and use the same motors, so the speed control system we
used last year [1] is highly applicable to Phobetor. The control system must accept a desired speed vd(t) in
m/s and a signed error e(t) between desired and actual speed, also in m/s. The controller’s output is motor
voltage u(t). The controller implementation is based on a proportional-integral control with a feed-forward
term, and is given by

u(t) = f(vd(t)) + kpe(t) + ki

∫
e(t)dt,

11

where kp and ki are constants tuned to minimize overshoot and are kept small so high-frequency noise from
speed measurement input is not amplified in controller output. Figure 8 shows a block diagram of the
controller from a Simulink model.

Wheel SpeedRobot Plant Model

K

t.s+1
Output

Saturation
Kp

0.35

Ki

0.1

Integrator

1
s

Feed Forward

Desired Speed

V

Figure 8: Block Diagram of Speed Controller

The proportional and integral terms are familiar from standard PID controllers, where the integral term
eliminates steady-state error. The rotational speed of the motor is not a linear function of voltage, though,
so we need a feed-forward term based on a model of the motor to compensate for the non-linearity and allow
the PI controller to work well.

Specifically, from data collected on these motors last year we fit a function to map desired speeds to motor
voltages:

V (y) = −τ ln
(

1− y

K

)
,

where y is the speed in m/s, V is the motor voltage, and K and τ are fit parameters. By adding the feed-
forward term given by V (y) to the control law, we linearize the control problem so the plant can be controlled
by PID. Note that the motor’s response is different when rotating in forward and reverse directions, and
since the motors are mounted with mirrored orientation the feed-forward terms for Phobetor’s left and right
motors are different.

Lastly, we made additional modifications to the controller to compensate for nonlinearities in the plant. To
prevent Phobetor from accelerating too quickly, which might lift the front wheel off the ground or cause
the drive wheels to slip excessively, we limit the magnitude of changes in controller output. Also, when the
motor output voltage saturates we prevent integral windup to keep the controller responsive to later setpoint
changes.

5 Conclusion

Phobetor is a reliable, robust, and innovative autonomous platform that builds off of the success of our
team’s two previous entries. Enhancing Phobetor ’s capabilities, creating a more streamlined and low profile
chassis, and augmenting the vision and path planning software algorithms for Phobetor took priority as we
approached the design process for this year’s entry. By refining the system with a long life span and low
maintenance in mind, we believe that we were able to make significant improvements to our robot. We are
proud of our final product and eager to demonstrate its capabilities in the upcoming competition.

12

References

[1] Solomon O Abiola, Christopher A Baldassano, Gordon H Franken, Richard J Harris, Barbara A Hen-
drick, Jonathan R Mayer, Brenton A Partridge, Eric W Starr, Alexander N Tait, Derrick D Yu, and
Tony H Zhu. Argos: Princeton University’s Entry in the 2009 Intelligent Ground Vehicle Competition.
2009.

[2] Solomon O Abiola, Christopher A Baldassano, Gordon H Franken, Richard J Harris, Barbara A Hen-
drick, Jonathan R Mayer, Brenton A Partridge, Eric W Starr, Alexander N Tait, Derrick D Yu, Tony H
Zhu, and Applied Science. Argos: Princeton University’s Entry in the 2009 Intelligent Ground Vehicle
Competition. In Intelligent Robots and Computer Vision XXVII, volume 2, 2010.

[3] Hans Jø rgen Andersen, T. Bak, Kristian Kirk, T. L. Dideriksen, C. Madsen, and M. B. Holte. Obstacle
detection by stereo vision, introducing the PQ method. In Proceedings of the Second International
Conference on Informatics in Control, Automation and Robotics, ICINCO 2005, Barcelona, Spain,
2005.

[4] Anand R. Atreya, Bryan C. Cattle, Brendan M. Collins, Benjamin Essenburg, Gordon H. Franken,
Andrew M. Saxe, Scott N. Schiffres, and Alain L. Kornhauser. Prospect Eleven: Princeton University’s
Entry in the 2005 DARPA Grand Challenge. Journal of Field Robotics, 23(9):745–753, 2006.

[5] Christopher Baldassano, David Benjamin, Benjamin Chen, Gordon Franken, Will Hu, Jonathan Mayer,
Andrew Saxe, Tom Yeung, and Derrick Yu. Kratos: Princeton University’s Entry in the 2008 Intelligent
Ground Vehicle Competition. IGVC Technical Paper 2008, May 2008.

[6] Christopher A. Baldassano, Gordon H. Franken, Jonathan R. Mayer, Andrew M. Saxe, and Derrick D.
Yu. Kratos: Princeton University’s Entry in the 2008 Intelligent Ground Vehicle Competition. In
Proceedings of IS&T/SPIE Electronic Imaging Conference, volume 7252, 2009.

[7] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Communications of the ACM, 24(6):381–
395, 1981.

[8] Gabriel M. Hoffmann, Claire J. Tomlin, Michael Montemerlo, and Sebastian Thrun. Autonomous
Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental Validation and
Racing. In Proceedings of the 26th American Control Conference, pages 2296–2301, 2007.

[9] Alain Kornhauser, Issa Ashwash, Christopher Baldassano, Lindsay Gorman, Jonathan Mayer, Andrew
Saxe, and Derrick Yu. Prospect Twelve: Princeton University’s Entry in the 2007 DARPA Urban
Challenge. Submitted to IEEE Transactions on Intelligent Transportation Systems, 2008.

[10] Maxim Likhachev, David Ferguson, Geoffrey Gordon, Anthony (Tony) Stentz, and Sebastian Thrun.
Anytime dynamic a*: An anytime, replanning algorithm. In Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS), June 2005.

[11] R. Manduchi, A. Castano, A. Talukder, and L. Matthies. Obstacle Detection and Terrain Classification
for Autonomous Off-Road Navigation. Autonomous Robots, 18(1):81–102, 2005.

[12] Reid Simmons and Dale James. Inter-Process Communication: A Reference Manual, August 2001.

[13] Rudolph van der Merwe and Eric A. Wan. Sigma-Point Kalman Filters For Integrated Navigation. In
Proceedings of the 60th Annual Meeting of The Institute of Navigation (ION), pages 641–654, 2004.

[14] Derrick D. Yu. Building A Robust Real-Time Lane Detection Algorithm. 2008.

[15] Derrick D. Yu. A Robust Method of Validation and Estimation of Road Lanes in Real Time for
Autonomous Vehicles. 2009.

Special Thanks

The 2010 IGVC team thanks our team advisor, Professor Clarence W. Rowley, for his continued support of
this project. We would also like to express our gratitude to the Princeton School of Engineering and Applied
Sciences, the Keller Center for Innovation in Engineering Education, and the Norman D. Kurtz ’58 fund for
their gracious donation of resources. Also, we thank Stephanie Landers of the Keller Center and Tara Zigler
of the Department of Operations Research & Finance Engineering for their tremendous logistical assistance.
Our team could not have gone far without the encouragement and assistance of the numerous professors,
students, and faculty members of Princeton University, and we would like to thank all who have continued
to provide us with the feedback and help that has allowed us to come this far.

14

